Thaddäus Wiedemer
Open Menu
Close Menu
Bio
Publications
Experience
Publications
Daniil Zverev
,
Thaddäus Wiedemer
,
Ameya Prabhu
,
Matthias Bethge
,
Wieland Brendel
,
A. Sophia Koepke
(2025).
VGGSounder: Audio-Visual Evaluations for Foundation Models
. ICCV 2025.
Project
Video
Prasanna Mayilvahanan
,
Thaddäus Wiedemer
,
Sayak Mallick
,
Matthias Bethge
,
Wieland Brendel
(2025).
LLMs on the Line: Data Determines Loss-to-Loss Scaling Laws
. ICML 2025.
PDF
Cite
Code
Project
Thaddäus Wiedemer
,
Yash Sharma
,
Ameya Prabhu
,
Matthias Bethge
,
Wieland Brendel
(2024).
Pretraining Frequency Predicts Compositional Generalization of CLIP on Real-World Tasks
. NeurIPS 2024 Workshop.
PDF
Cite
Prasanna Mayilvahanan
,
Roland S Zimmermann
,
Thaddäus Wiedemer
,
Evgenia Rusak
,
Attila Juhos
,
Matthias Bethge
,
Wieland Brendel
(2024).
In Search of Forgotten Domain Generalization
. ICLR 2025 (Spotlight).
PDF
Cite
Code
Project
Mark Basting
,
Robert-Jan Bruintjes
,
Thaddäus Wiedemer
,
Matthias Kümmerer
,
Matthias Bethge
,
Jan Van Gemert
(2024).
Scale Learning in Scale-Equivariant Convolutional Networks
. VISAPP 2024.
PDF
Cite
Prasanna Mayilvahanan
,
Thaddäus Wiedemer
,
Evgenia Rusak
,
Matthias Bethge
,
Wieland Brendel
(2023).
Does CLIP's Generalization Performance Mainly Stem from High Train-Test Similarity?
. ICLR 2024.
PDF
Cite
Code
Project
Slides
Thaddäus Wiedemer
,
Jack Brady
,
Alexander Panfilov
,
Attila Juhos
,
Matthias Bethge
,
Wieland Brendel
(2023).
Provable Compositional Generalization for Object-Centric Learning
. ICLR 2024 (Oral).
PDF
Cite
Code
Project
Slides
Thaddäus Wiedemer
,
Prasanna Mayilvahanan
,
Matthias Bethge
,
Wieland Brendel
(2023).
Compositional Generalization from First Principles
. NeurIPS 2023.
PDF
Cite
Code
Thaddäus Wiedemer
,
Stefan Wolf
,
Arne Schumann
,
Kaisheng Ma
,
Jürgen Beyerer
(2022).
Few-Shot Supervised Prototype Alignment for Pedestrian Detection on Fisheye Images
. CVPR 2022 Workshop.
PDF
Cite
Jörg Wagner
,
Jan Mathias Kohler
,
Tobias Gindele
,
Leon Hetzel
,
Thaddäus Wiedemer
,
Sven Behnke
(2019).
Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks
. CVPR 2019.
PDF
Cite